

A consistent spectropolarimetry focused reduction of all archival HARPSpol data (~490 stars, 3000+ datasets)

a fun side-project

Alexis Lavail

Postdoc at IRAP - Toulouse <astro@lavail.net>

Workshop PS2E - LUPM | 2024-03-05 | Sète

Kleine Welten V, Wassily Kandinsky, 1922

Spectropolarimeters

Designed as spectropolarimeter from the start

(Neo-)Narval

Télescope Bernard Lyot

ESPaDOnS

Canada-France-Hawaii Telescope

SPIRou

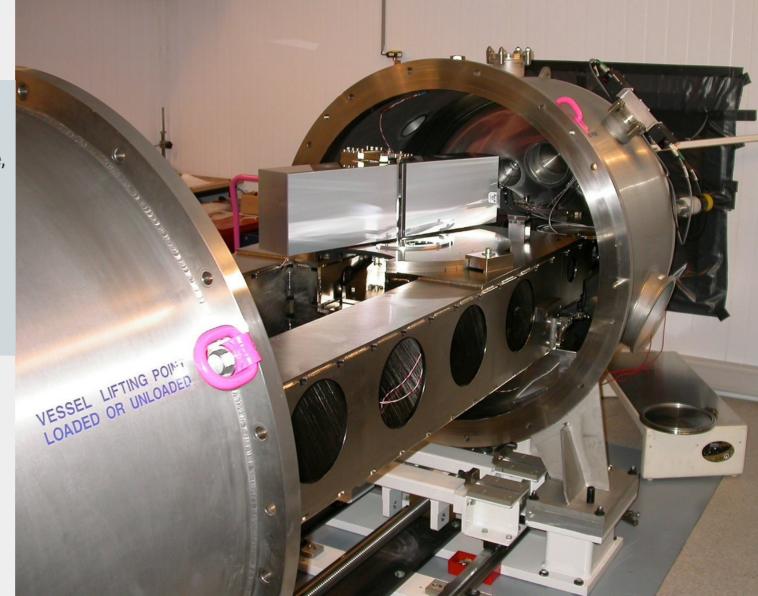
Canada-France-Hawaii Telescope Designed as spectrograph with polarimetry as add-on

HARPSpol

ESO/La Silla 3.6m telescope

CRIRES+

ESO Very Large Telescope


HARPSpol

HARPS

Mounted at ESO 3.6m telescope, La Silla since 2003 R~115000

λ: 378 – 691 nm

HARPSpol – polarimetric mode for HARPS from 2009 Stokes QUV

> How do people use HARPSpol data for their publications?

I checked ADS for publication containing keywords like HARPSpol. Found 42 publications, can be sorted into 3 groups:

"Uppsala connection"

REDUCE IDL

Kochukhov, Piskunov, Wade or Alecian in author list "Toulouse connection"

LIBRE-ESPRIT

Donati or Blazère in author list

"Potsdam connection"

HARPS DRS

Järvinen/Hubrig/Schöller in author list

28

3

9

> How do people use HARPSpol data for their publications?

I checked ADS for publication containing keywords like HARPSpol. Found 42 publications, can be sorted into 3 groups:

pyReduce

"Uppsala connection"

REDUCE IDL

Kochukhov, Piskunov, Wade or Alecian in author list "Toulouse connection"

LIBRE-ESPRIT

Donati or Blazère in author list

"Pu.

(1)

HARPS DRS

Järvinen/Hubrig/Schöller in author list

28

3

9

Come on Alexis ...

There is already a "HARPS-Polarimetry pipeline processed data" archive! [http://archive.eso.org/wdb/wdb/eso/repro/form]

Come on Alexis ...

There is already a "HARPS-Polarimetry pipeline processed data" archive! [http://archive.eso.org/wdb/wdb/eso/repro/form]

Selected HARPS line-processed data Query Form

Since November 2016 all FEROS reprocessed data products are available through the science data products query form.

This archive interface provides access to **pipeline-processed** <u>HARPS</u> **calibration** data (since October 2003) and **science-polarimetry** data products (since October 2010).

Please refer to the $\underline{\mathsf{HARPS}}$ pipeline web page to understand the qualities and limitations of the respective products.

Search Reset	Output preferences: html table Return max 200 rows. All Fi
Toward Information	
Target Information	
<u>Target</u> :	SIMBAD name V
<u>Input Target List</u> :	Browse No file selected.
Search Box:	00 10 00 If Simbad/Ned name or coordinates given
☑ <u>RA</u> :	✓ DEC: (J2000) Format: RA(h) DEC(deg) ✓
	l de la companya de
 Observing Information 	on
Observing Information	OD MM YYYY of night begin [12:00 UT])
□ <u>Night</u>	(DD MM YYYY of night begin [12:00 UT])
□ <u>Night</u>	
☐ <u>Night</u>	(DD MM YYYY of night begin [12:00 UT]) ing the following two fields (start/end dates)

Come on Alexis ...

There is already a "HARPS-Polarimetry pipeline processed data" archive! [http://archive.eso.org/wdb/wdb/eso/repro/form]

Why reinventing the wheel?

Come on Alexis ...

There is already a "HARPS-Polarimetry pipeline processed data" archive! [http://archive.eso.org/wdb/wdb/eso/repro/form]

> **3 years of data are missing** from the reduced data archive (2010-2013)

Come on Alexis ...

There is already a "HARPS-Polarimetry pipeline processed data" archive! [http://archive.eso.org/wdb/wdb/eso/repro/form]

- > **3 years of data are missing** from the reduced data archive (2010-2013)
- > Reduced **data format is complicated** (have not found wavelength solution yet)

Come on Alexis ...

There is already a "HARPS-Polarimetry pipeline processed data" archive! [http://archive.eso.org/wdb/wdb/eso/repro/form]

- > **3 years of data are missing** from the reduced data archive (2010-2013)
- > Reduced **data format is complicated** (have not found wavelength solution yet)
- > Pipeline **documentation** is **not helpful**

HARPS pipeline manual 3.0.0, 2023-01-31

> The HARPS instrument produces raw data in 3 different configurations or modes (HARPS, EGGS, and POLARIMETRY). Currently, only the reduction of data taken in HARPS mode is supported by the HARPS pipeline

Come on Alexis ...

There is already a "HARPS-Polarimetry pipeline processed data" archive! [http://archive.eso.org/wdb/wdb/eso/repro/form]

- > **3 years of data are missing** from the reduced data archive (2010-2013)
- > Reduced **data format is complicated** (have not found wavelength solution yet)
- > Pipeline **documentation** is **not helpful**
- > Put all reduced data on PolarBase

So ... what's the plan?

- 1> Download all the science data from the ESO archive.
- 2> Download all the raw calibration files
- 3> Reduce calibrations for each night.
- 4> Reduce science for each dataset
- 5> Package data with metadata and make it available

So ... what's the plan?

- 1> Download all the science data from the ESO archive.
- 2> Download all the raw calibration files
- 3> Reduce calibrations for each night.
- 4> Reduce science for each dataset
- 5> Package data with metadata and make it available
- 6> Enjoy

1> Download all the science data from the ESO archive.

1> Download all the science data from the ESO archive.

Quite simple using astroquery.eso
from astroquery.eso import Eso # import astroquery Eso package
table = eso.query_main(column_filters= { # query ESO main archive
 'instrument': 'HARPS', # select HARPS instrument
 'dp_cat': 'SCIENCE', # select SCIENCE data
 'dp_tech': 'ECHELLE,CIRPOL'}) # select Stokes V data
datafiles = eso.retrieve_data(table['Dataset ID'][:]) # download everything

1> Download all the science data from the ESO archive.

Quite simple using astroquery.eso
from astroquery.eso import Eso # import astroquery Eso package
table = eso.query_main(column_filters= { # query ESO main archive
 'instrument': 'HARPS', # select HARPS instrument
 'dp_cat': 'SCIENCE', # select SCIENCE data
 'dp_tech': 'ECHELLE,CIRPOL'}) # select Stokes V data
datafiles = eso.retrieve_data(table['Dataset ID'][:]) # download everything

End up with 16284 raw science files at ca. 34MB each after quick QC:

- spectropolarimetric sequences should contain multiple of 4 exposures
- removed some very early commissioning data

- 1> Download all the science data from the ESO archive. Quite simple using astroquery.eso
- 2> Download all the raw calibration files (should be as easy as science data right?)

- 1> Download all the science data from the ESO archive. Quite simple using astroquery.eso
- **2> Download all the raw calibration files** (should be as easy as science data right?)

For each night of HARPSpol observation, run:

```
from astroquery.eso import Eso # import astroquery Eso package
table = eso.query_main(column_filters= { # query ESO main archive
    'instrument': 'HARPS', # select HARPS instrument
    'dp_cat': 'CALIB', # select CALIB data
datafiles = eso.retrieve_data(table['Dataset ID'][:]) # download everything
```

End up with raw calibration files for 671 nights

But

- calibration procedures and FITS keywords of files change every now and then ...

- 1> Download all the science data from the ESO archive. Quite simple using astroquery.eso
- 2> Download all the raw calibration files (should be as easy as science data right?)
- 3> Reduce calibrations for each night

3> Reduce calibrations for each night

Using pyReduce: an easy-to-use and flexible Data Reduction System for echelle spectrographs

https://github.com/AWehrhahn/PyReduce

Works for many instruments: different config files for each instrument, core routines stay the same

PyReduce (*Piskunov*, *Wehrhahn & Marquart 2021*) is an update and port to python of the IDL REDUCE package (*Piskunov & Valenti 2002*).

Runs a serie of standard steps e.g:

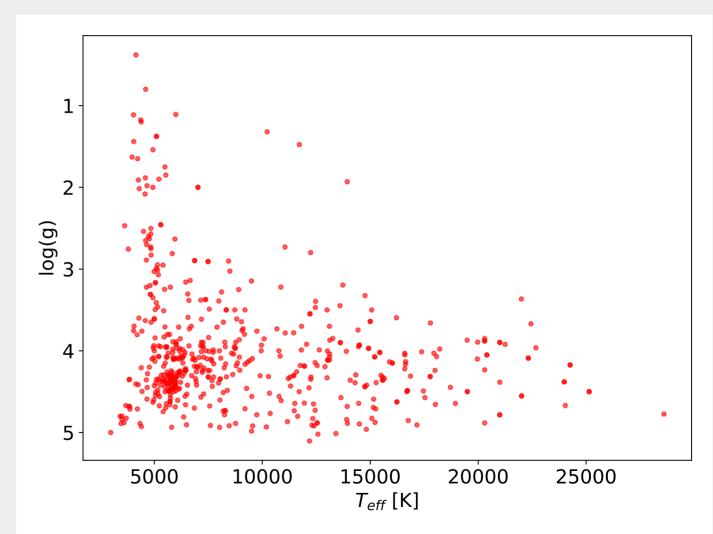
bias, flat, orders, scatter, norm_flat, wavecal

Config files already exist for HARPS!

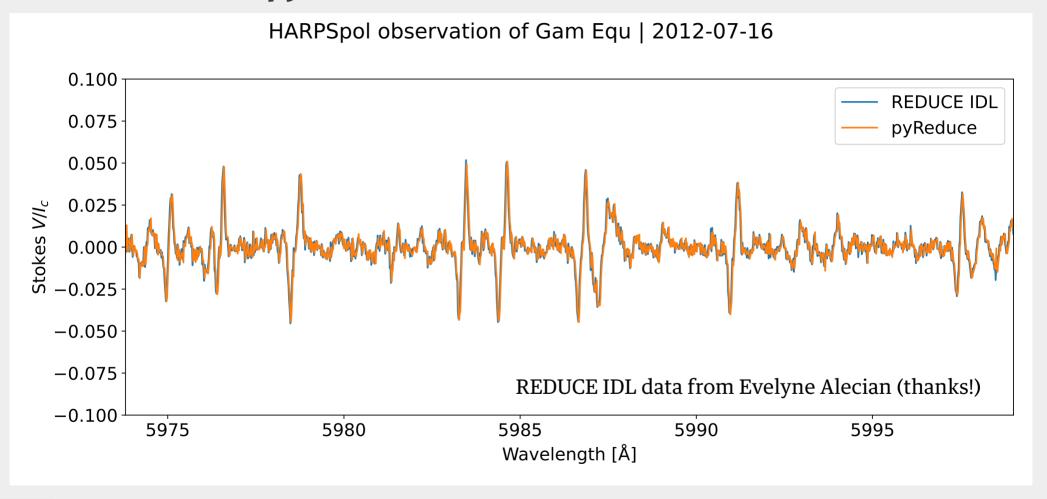
4> Reduce science for each dataset

Using pyReduce: an easy-to-use and flexible Data Reduction System for echelle spectrographs

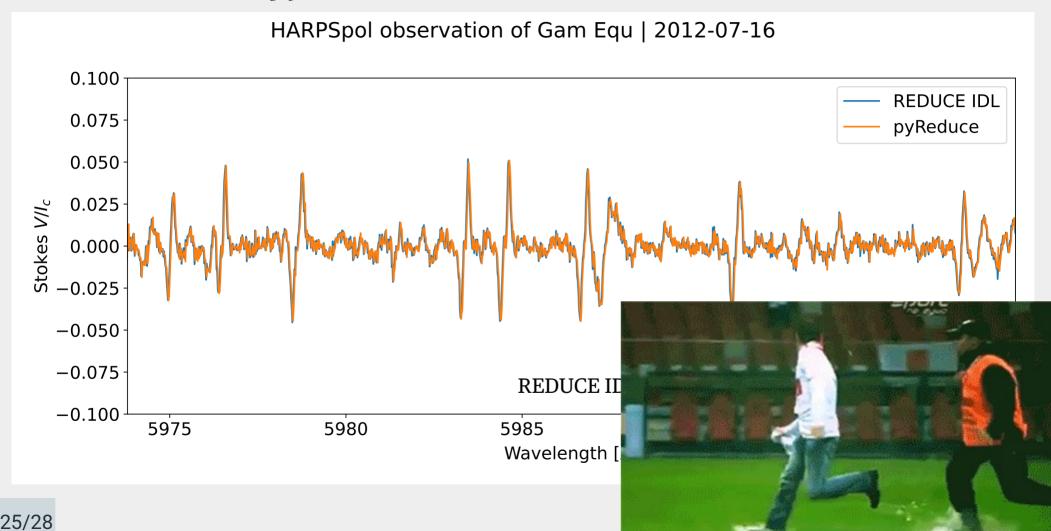
Runs a serie of standard steps e.g:

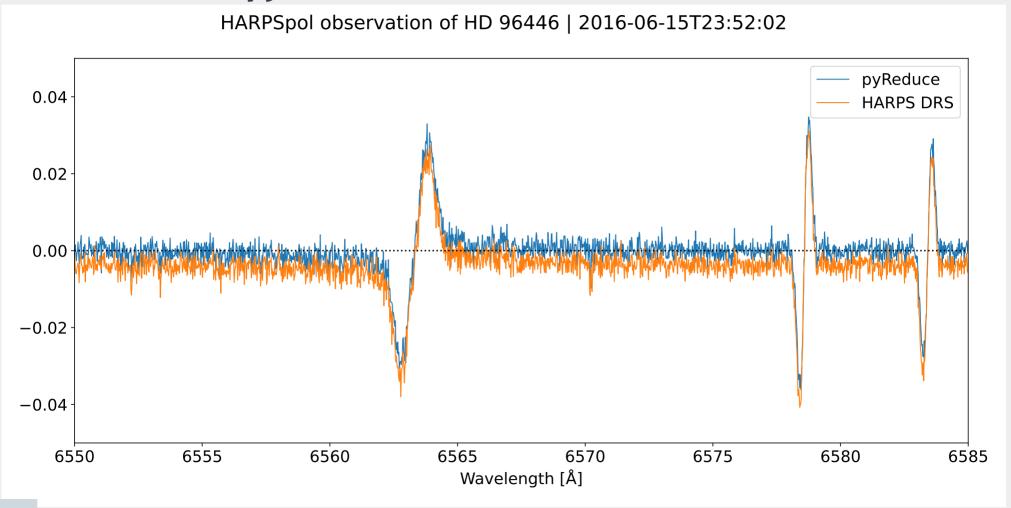

science

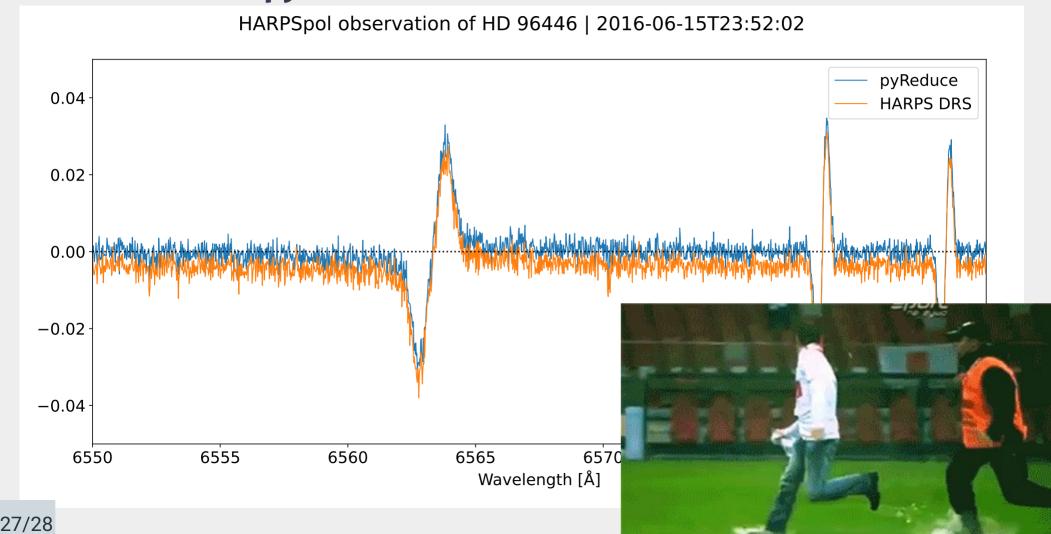
Outputs extracted science spectra.


HARPSpol star sample

- > Many solar-like and massive stars (reflects the large programmes *e.g* MiMeS?)
- > T_{eff} and logg are estimated automatically *via* Simbad and Vizier (median value of all catalogue matches).


Thanks to Frédéric Paletou and Pascal Petit for the python script.


IDL REDUCE vs pyReduce


IDL REDUCE vs pyReduce

HARPS DRS vs pyReduce

HARPS DRS vs pyReduce

Takeaway points

- > I downloaded **all** public HARPSpol science data in the ESO archive (with calibrations)
- > After a quick QC, **reduced all** data using pyReduce : **3000+** polarimetric **datasets** of ~< **490 stars**
- > Will make it available online quickly, eventually on PolarBase

HARPS

Mounted at ESO 3.6m telescope, La Silla since 2003 R~115000

λ: 378 – 691 nm

HARPSpol – polarimetric mode for HARPS from 2009 Stokes QUV

